Biosorption of Heavy Metals from Aqueous Solutions Using Immobilized Dead Bacillus sp. in Polysulfone Beads
- Alternative Title
- Bacillus sp. 사균을 고정화한 polysulfone bead를 이용한 수용액 내 중금속 흡착
- Abstract
- 본 연구에서는 유류 및 중금속 오염 토양으로부터 분리한 토착 미생물인 Bacillus sp. 사균을 고정화한 polysulfone bead를 이용하여 수용액 내 Pb, Cu, Cd 그리고 Cr과 같은 중금속을 제거하는 흡착 배치실험을 실시하였다. 먼저 Bacillus sp. 사균을 각각 그 농도를 달리하여 10 % polysulfone 용액과 혼합하여 제조한 beads를 이용하여 오염수로부터 polysulfone beads의 미생물 농도별, 주입 beads의 양에 따른 Pb 제거 효율을 규명하였다. 실험 결과, 미생물 농도 5 %로 제조한 beads를 2 g 첨가하였을 경우 89 %의 높은 제거율을 보여, polysulfone beads의 제조 비용과 제거 효율을 고려하면 미생물 농도 5 %인 polysulfone beads를 2 g/50 mL 농도로 오염수에 주입하는 것이 가장 효과적인 것으로 나타났다. 흡착시간에 따른 beads의 Pb과 Cu의 흡착능을 규명하기 위한 배치실험 결과, 반응시간이 30분 일 경우 Pb과 Cu의 제거 효율은 각각 76 %와 51 %를 나타내며, 5시간 안에 평형에 도달하는 것으로 나타나 중금속 오염수를 짧은 시간 내에 처리할 수 있을 것으로 판단되었다. pH에 따른 polysulfone beads의 Cu 제거 효율 변화를 규명하기 위한 생물흡착 실험 결과, pH 2에서 제거효율 60 %로 가장 높게 나타나 pH가 낮은 침출수, 산성폐수의 중금속 처리에도 효과가 있는 것으로 밝혀졌다. 온도변화에 따른 polysulfone beads의 중금속(Pb과 Cu) 제거 효율 변화를 규명하기 위하여 배치실험을 실시한 결과, Pb의 경우 온도가 증가할수록, Cu의 경우에는 온도가 감소할수록 흡착능이 증가하였다. 이를 Van't Hoff 식으로부터 열역학적 특성을 규명한 결과, Pb와 Cu 모두 물리적 흡착이라 판단되었다. 중금속의 초기 농도에 따른 polysulfone beads의 제거 효율 실험 결과, Cr을 제외한 중금속(Pb, Cu, Cd)의 경우 10 mg/L 이하의 오염수에서 80 % 이상의 제거 효율을 나타내었다. Pb은 오염수의 Pb 농도가 0.5 - 10 mg/L 범위인 경우에 83 % 이상의 높은 제거 효율을 보여주었고, Cu의 경우 오염수의 농도가 2 - 10 mg/L에서 80 % 이상의 제거 효율을 나타내었다. Cd은 0.1 - 2 mg/L에서 86 %의 높은 Cd 흡착율을 보였으나, Cr의 경우 2 mg/L에서 제거 효율이 14 %로 가장 높게 나타났다. 실험 결과로부터 Bacillus sp. 사균을 고정화한 polysulfone beads를 이용한 생물흡착 공정은 중금속의 농도가 상대적으로 낮은 오염수를 처리할 때 중금속을 효과적으로 제거할 수 있을 것으로 판단되었다.
Beads에 의한 중금속 제거 기작을 규명하기 위하여 SEM/EDS 및 TEM을 이용하여 polysulfone beads에 흡착된 중금속의 특성과 구조를 분석하였다. Pb 흡착 전후의 beads의 표면과 내부를 관찰한 결과, beads의 내/외부 모두 다양한 크기의 다공질로 형성되어 있었으며, Pb 흡착 후 beads의 표면과 내부에 Pb이 다양한 형태의 고상으로 흡착되어 있는 것을 알 수 있었다. 본 연구를 통하여 polysulfone에 Bacillus sp. 사균을 고정화한 polysulfone beads가 중금속 오염 지하수로부터 중금속을 효과적으로 제거할 수 있음을 입증하였다.
Sorption batch experiments using immobilized biomass in polysulfone beads were performed to remove heavy metals such as Pb, Cu, Cd and Cr from an aqueous solution. The powdered bacillus drentensis sp. was immobilized in polysulfone beads, which was used as a biosorbent. The initial concentration of heavy metal (Pb, Cu, Cd or Cr) in solution was 10 mg/L, which was artificially titrated from the standard solution. Various amounts of polysulfone beads containing each different amount of dead biomass were added into Pb-contaminated solution and Pb removal efficiency of immobilized biomass was calculated. From the results of the experiment, more than 89 % of initial Pb were removed from the solution by using 2 g of polysulfone beads containing 5 % biomass, suggesting that the biosorption process using the immobilized biomass is very useful to treat water contaminated with Pb. Batch sorption experiments with different reaction times were performed to determine the optimal sorption time for the maximum removal efficiency of Pb and Cu. The removal efficiencies of Pb and Cu increased to 76 % and 51 % within 30 minutes, respectively, and the equilibrium for the reaction reached within 5 hours. Biosorption experiments for Cu were duplicated at various pH conditions. From the results of the experiment, the greatest Cu removal occurred at pH 2 of solution and the removal efficiency was 60 %.
Experiments were also carried out to assess the effect of temperature on the biosorption of heavy metals (Pb and Cu). Pb removal efficiency increased as the temperature increased from 20 to 35 ℃, while the Cu removal efficiency decreased from 86 % to 50 % according to the increase of temperature. The sorption ability of the immobilized biomass under different heavy metal concentrations in the solution was investigated. More than 80 % of heavy metals such as Pb, Cu and Cd except Cr were removed when the initial metal concentration was below 10 mg/L. For Pb, the removal efficiency was 83 % at the range of from 0.5 to 10 mg/L in solutions and for Cu, more than 80 % were removed from the solution when the initial Cu concentration ranged from 2 to 10 mg/L. Cd in the solution removed more than 86 % at the range of from 0.1 to 2 mg/L in solutions. However, Cr removal efficiency decreased to 14 % when the initial Cr concentration was higher than 2 mg/L.
From SEM/EDS and TEM analyses on the immobilized biomass before and after Pb sorption, it was observed that the bead had well developed porous structures and Pb ions were sorbed as the solid phase on the surface and interior of the immobilized biomass. Results of these experiments suggest that the biosorption process using the immobilized biomass is a promising removal process for water contaminated with the relatively low concentration of heavy metals.
- Author(s)
- Lee, Jiyoung
- Issued Date
- 2011
- Awarded Date
- 2011. 2
- Type
- Dissertation
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/9519
http://pknu.dcollection.net/jsp/common/DcLoOrgPer.jsp?sItemId=000001963773
- Alternative Author(s)
- 이지영
- Department
- 대학원 환경지질과학과
- Advisor
- 이민희
- Table Of Contents
- CHAPTER 1. INTRODUCTION 1
CHAPTER 2. OBJECTIVE 3
CHAPTER 3. BACKGROUND 4
3.1 Outline of research area 4
3.2 Principle of biosorption mechanism 7
3.2.1 Biosorption mechanisms 7
3.2.2 Biosorption by the immobilized biomass 11
3.2.3 Polysulfone as a polymeric matrix 14
CHAPTER 4. EXPERIMENTAL METHOD 18
4.1 Soil sampling and soil analyses for the experiment 18
4.2 Isolation and identification of microorganism and the production of immobilized biomass 21
4.2.1 Isolation and identification of microorganism 21
4.2.2 Preparation of biomass 23
4.2.3 The production of immobilized biomass 25
4.3 Batch biosorption experiments 28
4.3.1 Preparation of heavy metal contaminated solution 28
4.3.2 Effect of the amount of biomass and polysulfone beads on the removal efficiency 29
4.3.3 Effect of the reaction time on the biosorption 31
4.3.4 Effect of pH in solution on the biosorption 32
4.3.5 Effect of the temperature on the biosorption 33
4.3.6 Effect of the initial metal concentration in solution on the biosorption 33
4.4 SEM/EDS and TEM analysis for the image of heavy metal sorption 34
CHAPTER 5. RESULT AND DISCUSSION 35
5.1 Physical and chemical properties of soils 35
5.2 Results of batch sorption experiments 39
5.2.1 Effect of the amount of biomass and beads on the sorption efficiency 39
5.2.2 Effect of the reaction time on the biosorption . 41
5.2.3 Effect of pH in solution on the biosorption 43
5.2.4 Effect of the temperature on the biosorption 45
5.2.5 Effect of the initial metal concentration in solution on the biosorption 48
5.3 Results of the visualization for the sorption mechanism by using SEM/EDS and TEM 50
CHAPTER 6. CONCLUSION 56
REFERENCES 58
- Degree
- Master
-
Appears in Collections:
- 대학원 > 환경지질과학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.