음향 전력스펙트럼밀도를 이용한 컨볼루션 신경망 기반 기계 결함 진단 시스템
- Alternative Title
- A Machine Fault Diagnosis System based on Convolutional Neural Network using Acoustic Power Spectral Density
- Abstract
- Machine fault diagnosis is a process that automatically detects the states of machine. In fact, the efficiency of machining and the quality of products in the manufacturing process are affected by the tool state, and wear and damaged tools can cause more serious problems in process performance and quality degradation of products, from the viewpoint of automation, it is necessary to develop a system for the progress of tool wear and the prevention of breakage during the process so that the tool can be replaced at an appropriate time.
In order to automatically detect the operational status of the entire machine system, including idle drills as well as abnormal drills for diagnosing machine defects, this thesis proposes a system that diagnoses the fault states of tool using the acoustic signal generated by tool that cuts the aluminium work piece on milling machine. In this thesis, CNN (Convolutional Neural Network) technology is used to diagnose machine faults. The sound generated when machine cuts a workpiece is one-dimensional signal. Therefore, it converts one-dimensional signal into two-dimensional signal and uses it as an input from CNN. There are two ways to represent one-dimensional data as an image of two-dimensional data. Both time-series data and frequency-based PSD(Power Spectral Density) are used, both of which apply histogram equalization to increase the homogeneity of data in all data sets. The generated image is used as CNN input. CNN is a good way to handle the complexity of image classification by effectively recognizing and emphasizing the characteristics of adjacent images while preserving the spatial information of images. It is an objective feature extraction and diagnosis method that excludes uncertainties and biases by automatically learning features with a high level of learning method. This thesis provides two methods to diagnose faults using CNN. first is to classify the five states simultaneously using one CNN to diagnose the five states of the collected tools. Next, the five states of the collected tools are divided into three categories, and each state is diagnosed using CNN. This is a hierarchical structure with three CNN classifiers. Both methods showed similar diagnostic results. As a result of comparing CNN model learning with time-series Sound-Image and frequency-based PSD-Image, the accuracy of CNN fault detection using the proposed PSD-Image was excellent. In addition, a comparative study of traditional feature extraction methods and deep learning methods based on the latest technology was conducted, with CNN using the proposed PSD-Image showed high accuracy compared to other feature extraction methods, and showing the results of a robust fault diagnosis system even when noise was injected. Therefore, the proposed system will enable real-time maintenance of industrial field by reducing economic losses by preventing machine failures and improving the quality of machining accuracy.
- Author(s)
- 이경민
- Issued Date
- 2019
- Awarded Date
- 2019. 2
- Type
- Dissertation
- Keyword
- Machine Fault Diagnosis Convolutional Neural Network Acoustic Power Spectral Density Histogram Equalization
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/23346
http://pknu.dcollection.net/common/orgView/200000183187
- Alternative Author(s)
- Kyeong-Min Lee
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 IT융합응용공학과
- Advisor
- 권기룡
- Table Of Contents
- 1. 서론 1
1.1. 연구배경 및 목적 1
1.2. 연구내용 및 범위 4
1.3. 논문 구성 8
2. 최근 연구와 이론적 배경 10
2.1. 기계 결함 진단을 위한 신호 11
2.1.1. 음향 방출 신호를 이용한 결함 진단 11
2.1.2. 진동 신호를 이용한 결함 진단 15
2.1.3. 음향 신호를 이용한 결함 진단 18
2.2. 신호 기반 기계 결함 진단을 위한 특징 추출 및 선택 방법 21
2.2.1. 시간 영역의 특징 추출 및 선택 방법 22
2.2.2. 주파수 영역의 특징 추출 및 선택 방법 24
2.2.3. 시간-주파수 영역의 특징 추출 및 선택 방법 24
2.3. 기계 결함 진단 기법 25
2.3.1. 모델 기반 기법 25
2.3.2. 기계학습을 이용한 기법 27
2.3.3. 딥러닝을 이용한 기법 29
3. 제안하는 음향 전력스펙트럼밀도를 이용한 컨볼루션 신경망 기반 기계 결함 진단 기법 36
3.1. 2차원 영상 표현 방법 38
3.1.1. 시계열을 이용한 Sound 영상 표현 41
3.1.2. 전력스펙트럼밀도를 이용한 PSD 영상 표현 46
3.2. 컨볼루션 신경망 구조 56
3.2.1. 결함 진단을 위한 컨볼루션 신경망 구조 57
3.2.2. 결함 진단을 위한 계층적 컨볼루션 신경망 구조 58
3.3. PSD 영상을 이용한 컨볼루션 신경망 59
4. 실험 및 평가 61
4.1. 기계 작동 조건에 따른 데이터 수집 61
4.2. PSD 영상을 이용한 컨볼루션 신경망 기반 결함 진단 66
4.2.1. Sound 영상을 이용한 컨볼루션 신경망 기반 결함 진단 67
4.2.2. PSD 영상을 이용한 컨볼루션 신경망 기반 결함 진단 72
4.2.3. 노이즈에 대한 PSD 영상 결함 진단 78
4.2.4. 비교 연구 85
4.3. 하드웨어 설계 및 제작 89
4.3.1. 기계설비 상태의 정보 수집 하드웨어 개발 89
4.3.2. 기계설비 실시간 모니터링 시스템 개발 93
5. 결 론 97
6. 참고문헌 99
7. 감사의 글 114
- Degree
- Doctor
-
Appears in Collections:
- 대학원 > IT융합응용공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.