PUKYONG

CNN을 이용한 스티어링 휠 이종 불량 검출에 관한 연구

Metadata Downloads
Alternative Title
A Study on the Detection of Steering Wheel Dissimilarity using CNN
Abstract
Steering wheel that we handle the most driving cars has many switches not only with
steering function but with controlling a number of other functions within the cars.
Therefore, Steering wheel is equipped with completely different switches even for the
same model according to consumers’ choices for options. Steering wheel manufacturers
produce diverse steering wheels following consumers’ needs and then supply those to car
manufacturers but very often the human error happens unintentionally, when option “A”
needs to be assembled, option “B” comes out as a result, due to various options on the
list. Vision Test Machine is used to avoid this human error, but It works simply in the
way of comparing images and therefore miscalculations caused by micro conditions occur
which are obvious demerits not to mention being inefficiency. In this paper, I present one
of the deep learning models that shows outstanding performance in classifying images and
assorts car steering wheels using Convolution Neural Network. Steering wheel images
collected from 2016 to 2019, made by Vision Test Machine in Steering wheel
manufacturer. All collected images are defined as 5 categories. One category of them is
used in this paper. Not the whole picture of the image, only 3parts of an image which
have an effect on classifying steering wheel are extracted and used. Convolution Neural
Network uses a model based Inception module and a model based ResNet. Google’s deep
learning open source framework, Tensorflow, is used for the experiment and OpenCV and
Scikit-Learn are used for preprocessing images and processing data. Steering wheel
categorization-model proposed in the paper can be applied in Vision Test Machine System
or in actual work adopting additional data processing steps
Author(s)
박광혁
Issued Date
2020
Awarded Date
2020. 8
Type
Dissertation
Keyword
CNN 머신러닝 자동차 부품 스티어링 휠 이종 불량 검출
Publisher
부경대학교
URI
https://repository.pknu.ac.kr:8443/handle/2021.oak/2455
http://pknu.dcollection.net/common/orgView/200000337668
Alternative Author(s)
Kwang hyuk Park
Affiliation
부경대학교 대학원
Department
대학원 정보시스템협동과정
Advisor
김창수
Table Of Contents
Ⅰ. 서론 1
1. 연구 배경과 목적 1
2. 연구 범위 4
Ⅱ. 이론적 배경 및 선행연구 5
1. 합성곱 신경망 5
가. 합성곱층 6
나. 풀링층 6
2. 합성곱 신경망 기반의 아키텍처 7
가. AlexNet 8
나. VGG 9
다. GoogLeNet 11
라. ResNet 14
3. 머신러닝 기반 부품 분류 17
가. 사람의 개입에 따른 범주화 17
(1) 지도 학습 17
(2) 비지도 학습 17
나. 데이터 가용성에 따른 학습 방법 18
(1) 배치 학습(오프라인 학습) 18
(2) 온라인 학습 18
(3) 엔드 투 엔드 시스템 18
Ⅲ. CNN기반의 스티어링 휠 이종 분류 모델 20
1. 스티어링 휠 데이터 20
2. 분류 범위 정의 23
3. 특성 엔지니어링 25
4. 이진 분류와 다중 분류 모델 34
5. 전이학습 35
Ⅳ. 구현 및 성능평가 39
1. 데이터 전처리 41
2. 모델 학습 42
3. 성능 평가 49
4. 웹 기반 데모 시스템 구현 50
Ⅴ. 결론 53
1. 결론 및 고찰 53
2. 추후 연구 54
참고문헌 57
Degree
Master
Appears in Collections:
대학원 > 정보시스템협동과정
Authorize & License
  • Authorize공개
Files in This Item:

Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.