딥러닝 알고리즘과 국소 커널회귀법에 기반한 비정형 소화물 탐지 알고리즘 개발
- Alternative Title
- Development of Atypical Parcels Detection Algorithm Based on Deep Learning Algorithm and Local Kernel Regression Method
- Abstract
- Recent trends in industrial robot development are automation for reducing labor
costs, working in dangerous environments, and increasing efficiency in repetitive
tasks. Specially, automation of the picking process to acquire parcels location
information in the online shopping mall logistics could not be achieved by lack of
skill in the detection of the parcels. In addition, the parcels at the online shopping
mall logistics center is sold by the piece and is various in sizes and shapes. Moreover,
the parcels are various in packaging forms such as unpacked forms, box packaging
forms and plastic packaging forms, etc. Therefore, a new detection algorithm to pick
these atypical parcels is positively necessary.
The purposes of this thesis are firstly to develop an atypical parcel detection
algorithm based on a deep learning algorithm and a local kernel regression method
using Kinect camera and secondly to design a posture controller for the end-effector
of a 7-link manipulator to move the extracted the bounding box location of the parcel
with a desired velocity of its end effector. To do these tasks, the followings are done.
Firstly, the system used in this thesis consists of a 7-link manipulator for moving
end-effector to the atypical parcels and an image processing system for detecting
atypical parcels are used for this thesis. Secondly, a new detection algorithm for
detecting atypical parcels is proposed. The proposed detection algorithm consists of
4 steps: detecting central pixel of bounding box of atypical parcels using a deep
learning algorithm, obtaining 3D depth map of parcels using Kinect camera,
detecting the edge of a parcel surrounding the central pixel of the bounding box using
a local kernel regression method, and extracting central location of the bounding box.
Thirdly, forward kinematics modeling and Jacobian matrix of the 7-link manipulator
are described. Fourthly, moving the position of the end-effector to the extracted
bounding box location of the parcel and tracking angular velocity of the end effector
is controlled by a controller based on differential kinematics. Finally, experiment
results are shown to verify the validity of the proposed detection algorithm method
compared to Canny method and of the designed controllers results.
- Author(s)
- 오종민
- Issued Date
- 2019
- Awarded Date
- 2019. 2
- Type
- Dissertation
- Keyword
- parcel deep learning algorithm 3D point cloud local kernel regression method 7-link manipulator Kinect camera differential kinematics controller.
- Publisher
- 부경대학교
- URI
- https://repository.pknu.ac.kr:8443/handle/2021.oak/23251
http://pknu.dcollection.net/common/orgView/200000180585
- Affiliation
- 부경대학교 대학원
- Department
- 대학원 기계설계공학과
- Advisor
- 김상봉
- Table Of Contents
- 제 1 장 서 론 1
1.1 연구 배경 및 동기 1
1.2 연구 목적 및 방법 5
1.3 연구내용 및 범위 6
제 2 장 시스템의 구성 9
2.1 시스템의 구성 9
2.1.1 매니퓰레이터 시스템의 구성 9
2.1.2 이미지 프로세싱 시스템 11
2.1.2.1 이미지 프로세싱 시스템의 구성 11
2.1.2.2 카메라 보정 13
2.1.2.3 카메라 좌표계 19
2.2 제어시스템의 구성 및 제원 22
제 3 장 딥러닝 알고리즘과 국소 커널회귀법을 이용한 소화물 탐지 알고리즘 30
3.1 딥러닝 알고리즘 30
3.1.1 통일화된 탐지 31
3.1.2 네트워크 설계 34
3.1.3 손실함수 37
3.2 국소 커널회귀법을 이용한 물체 엣지 탐지 393.2.1 3차원 포인트 클라우드 39
3.2.2 Canny 엣지 탐지법 42
3.2.3 국소 커널회귀법을 이용한 엣지 탐지 46
제 4 장 시스템 모델링 및 제어기 설계 51
4.1 시스템 모델링 51
4.1.1 순기구학 51
4.2 제어기 설계 62
4.2.1 미분기구학을 이용한 매니퓰레이터 제어기 설계 63
제 5 장 실험 결과 70
5.1 제안된 비정형 소화물 탐지 알고리즘의 실험결과 70
5.2 매니퓰레이터 실험결과 89
제 6 장 결 론 114
6.1 결론 114
6.2 향후 연구 방향 117
감사의 글 118
참고문헌 120
Publications and Conferences 133
- Degree
- Master
-
Appears in Collections:
- 산업대학원 > 기계설계공학과
- Authorize & License
-
- Files in This Item:
-
Items in Repository are protected by copyright, with all rights reserved, unless otherwise indicated.